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An algorithm for finding the first integrals of fourth-order non-linear differential equations, encountered when describing non- 
linear wave processes, is proposed. The use of the method is illustrated by a number of examples. The first integrals obtained 
are employed to construct a solution of the generalized fifth-order Korteweg-de Vries equation in travelling-wave variables, which 
is expressed in terms of hyperelliptic integrals. © 2005 Elsevier Ltd. All rights reserved. 

1. I N T R O D U C T I O N  

Finding first integrals is, essentially, one of the main problems of mechanics and the theory of differential 
equations in attempts to obtain a general solution of any problem in quadratures. 

Several fifth-order differential equations have been proposed to describe waves on water [1, 2]. One 
of these has the form 
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Here a and [3 are small parameters 

= a / h ,  ~ = h / l  

a is the amplitude of the perturbation, h is the depth of the liquid, l is the wavelength, z is the dimensionless 
surface tension coefficient, ~ is the dimensionless distance from the surface (0 -< 2 _ 1), and rl({, t) is 
the wave profile, which depends on the coordinate { and the time t. 

For arbitrary values of the parameters a, 13 and ~, Eq. (1.1) does not belong to a class of exactly solvable 
equations, since it does not pass the Painlev6 test [3]. Using an approach similar to that used previously 
in [3], it is possible to obtain only a certain set of particular solutions. However, for a special choice of 
the variables and the parameters 

16 3L~ '2 11 3L 2 
n=3 w,  =Lz, t = -  4 t', x=O, (1.2) 

Eq. (1.1) can be converted to a non-linear fifth-order equation (the primes on [3' and t' are omitted) 

w t + Wzzzz z - l O w w z z  z + ~Wzz z - 20WzWzz + 30W2Wz - 6 ~ w w  z = 0 (1.3) 

CPrikl. Mat. Mekh. Vol. 69, No. 2, pp. 226-234, 2005. 
0021-8928/S--see front matter. © 2005 Elsevier Ltd. All rights reserved. 
doi: 10.1016/j.jappmathmech.2005.03.006 



206 N.A. Kudryashov 

When 13 = 0, Eq. (1.3) is a fifth-order Korteweg-de Vries equation. The generalized modified fifth- 
order Korteweg-de Vries equation 

W t "]" WZZZZ z "l" ~ W z z  z --  40wWzWzz - l O w 2 w z z  - lOw~ + 3 0 W 2 W z  - 6 ~ W 2 W z  = 0 

is connected with Eq. (1.3) by a Miura transformation [4-6]. 
If we seek a solution of the wave equations (1.3) and (1.4) in travelling-wave variables 

w ( z , t )  = y ( x ) ,  x = Z - C o t  

(1.4) 

2 
Yxxxx - lOyYxx - 5Yx + 10y 3 + ~(Yxx - 3Y 2) + 8y + kt = 0 

Yx:,xx - lOy2yxx - IOyy2x + 6Y 5 + ~(Yxx - 2Y 3) + 8y + g = 0 

Here we have introduced the following notation: 8 = -c 0, and g is a constant of integration. 
The problem arises of finding a general solution of Eqs (1.5) and (1.6). It is well known that, to 

integrate N ordinary differential equations in the general case, it is necessary to know N first integrals. 
However, for autonomous systems it is sufficient to known N-1 first integrals, while to integrate 
Hamiltonian systems in quadratures, as a rule, it is sufficient to know N / 2  first integrals, which follows 
from Liouville's theorem [%9]. 

Finding first integrals of many non-linear differential equations (particularly of high order) often 
involves considerable difficulties, which is explained by the lack of a general approach to solving this 
problem. 

In this paper we propose an algorithm for finding the first integrals of non-linear differential equations 
having the form of polynomials in the dependent variable and its derivatives. The algorithm consists 
of the following stages: (1) choosing the leading terms of the non-linear differential equation, (2) writing 
a polynomial with undetermined coefficients, corresponding to the first integral of the new differential 
equation, which contains leading terms of the initial equation, (3) solving systems of linear algebraic 
equations for the coefficients of the first integral of the new differential equation with leading terms 
of the initial differential equation, (4) writing a polynomial with undetermined coefficients 
corresponding to the initial equation, and (5) solving systems of algebraic equations for the coefficients 
of the new polynomial and representing the first integrals of the initial differential equation. 

It should be noted that it will be hardly possible to realize this algorithm without using widely employed 
analytical calculation programmes of the MAPLE and MATHEMATICA types. 

The proposed algorithm is illustrated by finding the first integrals of Eqs (1.5) and (1.6) and the 
following non-linear fourth-order differential equations, which are also encountered in wave dynamics 

2 2 
Y~xxx + 5YxYxx - 5y  Yxx - 5yYx + y5 _ 8 = 0 (1.7) 

2 2 4 2 

2 1 Y x Y x x _ 5 8 Y x ~  9Yx 108~ Vy 2 2 8 2 1 + g  = 0 (1.8) Yxxxx - 4Y~Yxxx _ 3 Y~x + 2 2 l- + -- 
y y 2 y y 2y 3 y y 

2 2 
5 2 5 5  ~3  

Yxxxx - z~YxYXXXy 23YXXy + 2 ~ y  - 5y2yxx - ~YYx + ~Y - PY + gY = 0 (1.9) 

Equation (1.7) is the stationary case of the Sawada-Kotera equation, used to describe a number of 
wave processes [10]. If, on the right-hand side of Eq. (1.7), we add the expression txry, where ct is a 
parameter, and y and x are dependent and independent variables, then Eq. (1.7) defines a new non- 
classical special function, expressed in terms of the solution of a fourth-order non-linear differential 
equation [11-13]. Equation (1.5) is widely known when [~ = 0. It is noteworthy that, when adding the 
expression ~ to the right-hand side (ix is a parameter andx is the variable), we also define new special 
functions. All the differential equations indicated above are special cases of a differential equation which 
arises in the H6non and Heiles model for describing the behaviour of a star in the middle of the galactic 
field [14-16]. Equations (1.8) and (1.9), obtained in [1%19], arise as special cases of higher analogues 
of Painlev6 equations, defining new special functions. 

(1.5) 

(1.6) 

then, from Eqs (1.3) and (1.4), after integration with respect to x, we arrive at the following non-linear 
ordinary differential equations 
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In order to construct general solutions of Eqs (1.5)-(1.9) in quadratures, it is necessary to obtain at 
least two first integrals of these equations. 

2. AN A L G O R I T H M  FOR FINDING FIRST INTEGRALS 

In fact, all the differential equations mentioned above have one fairly obvious first integral, which can 
be found by multiplying the differential equation by the derivative Yx and dividing by a certain power 
ofy. However, one first integral cannot be so simply obtained. Hence, we will use a single approach to 
find the first integrals of all the differential equations mentioned above. 

We will consider the determination of the first integral of a differential equation. For convenience 
we will introduce the following notation 

Y = YO, Yx = Yl ,  Yxx = Y2, Yxxx = Y3, Yxxxx = Y4 

Suppose it is required to obtain the first integral of the following non-linear differential equation 

Y4 = E(yo, Yl, Y2, Y3) (2.1) 

Suppose also that there is a first integral of Eq. (2.1) in the form 

e(Yo, Yl, Y2, Y3) = C1 (2.2) 

where C 1 is an arbitrary constant. 
According to the definition of the first integral for an autonomous differential equation, the first 

integral (2.2) satisfies the following partial differential equation 

3 
3P 

Z Yn + l~y---~n = Q(Yo, Y,, Y2, Y3, Y4)(Y4 - E(yo, Yl, Y2, Y3)) (2.3) 
n=0 

where Q(yo, y b  y2, y3, y4) is a certain expression, which may depend on the variable y and its derivatives. 
Bearing in mind thaty4 satisfies Eq. (2.1), we obtain from Eq. (2.3) 

2 

Z Yn+lff~nn + E(Y0' Yl, Y2, Y3)~ P = 0 0 y  3 
n=0 

(2.4) 

This is a fundamental equation from which one can find the first integrals of the non-linear differential 
equations mentioned above. 

To carry out the first stage of the proposed algorithm, we substitute the following expressions into 
the differential equation being investigated 

Yo Bo/xp, Y l -PBo /xp  ÷ 1 = = , Y2 = P(P + 1)Bo/x p +2 

Y3 = - P ( P  + 1)(p + 2)Bo/x  p+3, Y4 = P(P + 1)(p + 2)(p + 3)Bo[x p+4 
(2.5) 

It should be noted that formulae (2.5) are identical with the corresponding formulae of the 
Painlev6-Kovalevskaya algorithm when analysing non-linear differential equations on the Painlev6 
property. Comparing the terms of the differential equation and choosing the least degree in the 
expressions obtained, we obtain a value of the exponentp (for an exactly solved differential equation 
this value, as a rule, is always equal to an integer, usually unity or two). Carrying out this procedure, 
we obtain thatp = 2 for Eq. (1.5) andp = 1 for Eqs (1.6)-(1.9). For example, all terms but the last are 
leading terms of Eq. (1.7). 

The differential equation made up of the leading terms of Eq. (1.7), takes the form 

~ 2 ~- 2+y5 
Yxxxx + 3YxYxx - 3y  Yxx - 3YYx = 0 (2.6) 

Substituting expression (2.5) withp = i into Eq. (2.6), we obtain that all the terms of this differential 
degree x- .  It is natural to expect that the first integrals of Eq. (2.6) will have the form equation have 5 

of polynomials, also consisting of terms of one degree when (2.5) is substituted, and they will be of less 
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degree than the terms of Eq. (2.6). Hence, the next stage in obtaining the first integrals of Eq. (1.7) is 
to construct a polynomial with undetermined coefficients, all the terms of which have the same, but 
lower degree, than Eq. (2.6). This form of polynomial can be constructed using the following recurrence 
formula 

Pk+4 = Y 3 P k + Y z P k + I + Y l P k + 2 + Y o P k + 3  , k = 0 . . . . .  n 
(2.7) 3 

Po = 1, P1 = Yo, P2 = Yl + Y~, P3 = Yo + YoYl + Y2 

As a result of calculations using formula (2.7) we obtain a polynomial, each term of which, when 
expressions (2.5) is substituted into it, has the same degree. To construct the simplest first integrals of 
the differential equations mentioned above, one must choose a polynomial for which n >_ 6. 

In this paper, when obtaining the first integrals of all the differential equations, we use a polynomial 
in which n = 12. In the polynomial obtained using formulae (2.7), for each of the terms we introduce 
undetermined coefficients, the finding of which leads to the construction of the first integral of the 
corresponding differential equation. Below we use a polynomial with undetermined coefficients in the 
form 

3 2 2 4 2 2 2 
P12 = aoY3 + (alYoY2 + a2Yl + a3YoYl + a4Yo)Y3 + (asYl + a6Yo)Y2Y3 + 

3 5 , 4 2 3  4 2  6 8 
+ (aTYoY ~ + asYoY l + a9Yo)y2y 3 + taloY 1 + anYoY 1 + a12yoy 1 + al3YoY l + a14Yo)y 3 + 

4 3 3 3 2 2  4 6 2 
+ boY 2 + (blYoY 1 + b2Yo)y 2 + (b3Y l + baYoY 1 + bsYoY 1 + b6Yo)y 2 + 

3 3  - 5 2  7 9 
+ (b7YoY ~ + 08YoYl + b9YoY 1 + bloYoYl + b l lYo)y  2 + 

6 4 2 3  4 2  6 8 2 12 
+ coY 1 + (c lY  l + c2YoYl + c3yoYl + c4YoYl + csYo)yoyl + c6Yo 

(2.8) 

Polynomial (2.8) with undetermined coefficients a0 . . . .  , a14, b0 . . . . .  b11, co, . . . ,  c6 was used to construct 
the first integrals of Eq. (2.6) in the form 

12 - j  
P = P121Yo = C 1, j = 6 . . . . .  12 (2.9) 

Substituting expression (2.9) into Eq. (2.6) withj = 6, and determining the coefficients of polynomial 
(2.8) by solving linear algebraic equations, we obtain the simplest first integral of Eq. (2.6). 

5 3  5 2 2  1 6  
P(Yo, Yl, Y2, Y3)=- Y l Y 3 - ~ Y ~  + "~Yl-~YoYl  + gYo = C1 (2.10) 

It can be seen that the order of the power of each term in (2.10), after substituting expressions (2.5) 
into it, is equal to six. It follows from Eq. (2.10) that the simplest first integral of Eq. (1.7) takes the 
form 

P(Y, Yx, Yxx, Yxxx) - ~)Y = K1 (2.11) 

Here K1 and henceforth K2, K3 and K4 are arbitrary constants. 
Solving the algebraic equations for the coefficients a0, . . . ,  ale , b0, ... , bll , Co, ... , c 6 of polynomial 

(2.8), we find that all these coefficients are equal to zero when j = 7, 8, 9, 10, 11. However, when 
j = 12 we obtain a polynomial which can be represented in the form of one more independent first 
integral 

(3 4 . 2 ) 2 ~.5 3 3 
3 + ~ ,72yo_,yoyl )y  3 + Fl(Y0, Yl, Y2)Y3-  y4 + 2Y0Y2 + Y3 

) 2 
+ F2(Yo, Yl Y2 + F3(Yo, Yl)Y2 + F4(Yo, Yl) = C2 (2.12) 

where 

(125 0) 2 2 2 4 4 9 2 3  4 2  176  
F1(Yo' Yl '  Y2) = Yl - 3Y0 Y2 + 3(Yl - 2yOYl + Yo)YoY2 - 7Yl - =2YoYl + 30Y0Yl - -~YoYl 
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25 3 4 117 2 2 13 6 
F2(Yo, Yl) = "~-Yl + 15YoYl - - '~-YoYl - -~Yo 

4 3 3  5 2  7 9 
Fa(Yo, Yl) = 9YoYl - 30YoYl + 36YoYl - 18YoYl + 3Yo 

22 6 35 2 5 45 4 4 157 6 3 19 8 2 10 17 12 
F4(Y0, Yl) = - -'~-Yl + "-~YoYl + y Y o Y l  - "-~'YoYl + "~YoYl + 3Y0 Yl -- ~-~Y0 

In Eq. (2.12), C 2 is an arbitrary constant. It can be seen from expression (2.12) that each term of this 
differential equation has an order of singularity equal to twelve. To find the first integral of the initial 
equation we must use a new polynomial with undetermined coefficients in the form 8P7 + 52p2 • As a 
result we obtain one more first integral of Eq. (1.7) 

3 ( 3 4 2 ) 2 -  1 5 4  3 3  
Yxxx + ~Y - 9y  Yx Yxxx + FI(y, Yx, Yxx)Y.xx - y Y x x  + 2y Yxx + 

2 
+/~2(Y, Yx)Yxx + F3(y,  Yx)Yxx + f74(Y, Yx) = K2 (2.13) 

where 

FI(y, Yx, Yxx) = FI(Y, Yx, Yxx) - 38y** + 9~yy x, 172(y, Yx) = F2(y, Yx) - ~Sy 

173(Y, Yx) = F3(Y, Yx) - 98Y 2 + 188y2yx - 38Y 4 

27° 3 2 ,~e2, 9 ° 2  2 
t74(Y ' Yx) = F4(Y, Yx) + 78yy~ - T o y  Yx - (68Y 5 - 3o )Yx - ~o y 

Substituting y ~  from Eq. (2.11) into Eq. (2.13), we obtain a second-order differential equation of 
the sixth degree, which is also the first integral of Eq. (1.7). The two first integrals obtained are sufficient 
to express the general solution of Eq. (1.7) in terms of hyperelliptic integrals, since the initial differential 
equation can be written in the form of a Hamiltonian system. 

3. F I R S T  I N T E G R A L S  OF EQS (1.5) ,  (1.6) ,  (1.8) AND (1.9) 

The procedure for finding the first integrals of Eqs (1.5), (1.6), (1.8) and (1.9) is largely similar to that 
described in the previous section for Eq. (1.7). However, substitution of expressions (2.5) into Eq. (1.5) 
shows that the degree of the singular equation is equal to two. Consequently, the corresponding equation, 
consisting of the leading terms of Eq. (1.5), takes the form 

2 
Yxxxx- lOyYxx - 5Yx + 10y 3 = 0 (3.1) 

The polynomial with undetermined coefficients for finding the first integrals of Eq. (3.1) takes the 
form 

2 2 , 3 . 2 2  
P12 = AoYaYo + AlYaY2Yl  + A2YaYlYo +/t322 + A4Y2Yo + 

2 4 _ 4 • 2 3 6 
+ A5Y2YlYo + A6Y2Yo + "%Yl + AsYlYo + A9Yo (3.2) 

Formula (2.9) is then used, and we obtain the first integrals of Eq. (3.1) with orders of the degrees 
8 10 of the leading terms of x- and x- . Bearing in mind the additional polynomials, the first integral can 

be written in the form 

1 2  2 5 4  1 2 3 1 2 
YxYxxx- 72Yxx- 5yyx + ~y + ~ ( y ~  - 2y ) + 72~y + ~ty = K 1 (3.3) 
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One more first integral of Eq. (1.5) can be represented in the form 

2 2 2 2 2 
Yxx~ - 12yYxY~xx - 4yYxx + 2YxYxx + 20y3yxx + 30y Yx - 24y 5 + 

2 3 
+ ~(Yxx - 3y2) 2 + ~(2yY~x - Yx - 4y  ) + 2B(Y~x - 3Y 2) = K2 (3.4) 

These two first integrals are sufficient to express the general solution of Eq. (1.5) in terms of hyperelliptic 
integrals. 

Substituting formulae (2.5) into Eq. (1.6), we obtain the order of the degree of the singular equation, 
equal to unity. The leading terms of the differential equation have degree x -5. To find the first integrals 
we also used polynomial (2.8) of the twelfth degree. The first integrals obtained take the form 

1 2  ~- 2 2 6 1 , , . 2  4 ,  1 2 
Y x Y x x x - ~ Y x ~ - ~ Y  Y x + Y  + ~ P ( Y x - Y  ) + ~ Y  +BY = K1 (3.5) 

2 , , . , 2  ~ 2 2  2 4 4 2  
Yxxx - lZy YxYxxx - ~Y Yxx + 4yYxYxx + 12ySyxx - Yx + 30y Yx - 9Y 8 + 

3 2 2 
+ [J(Yxx - 2y ) + 5(2yyxx - Yx - 3Y 4) + 2g(Yxx - 2Y 3) = K2 (3.6) 

We used the algorithm described above to obtain the first integrals of Eqs (1.8) and (1.9). The first 
integral of Eq. (1.8) takes the form 

2 2 4 2 
YxYxxx lYnx 2YxY~x_.__7 9Y~ 5,.Yx 1,.21 1 

+ - - -  - ~ 0 7  + . . . .  + Vy = K 1 (3.7) Y2 2 y2 Y 8y4 2 0 y4 By 

When finding the first integral (3.7) we first obtained the first integral of the equation consisting of 
the leading terms, and then part of the integral which takes into account the terms with the parameters. 

One more first integral of Eq. (1.8) has the form 

2 2 2 2 4 6 
Yxxx 6YxYxxYxxx 3YxY~4x YxYxx YxY~ 9Y~ 

2 3 + + 9 4 - 9 5 +  
Y Y Y Y Y 4y 6 

- 2 ~ 3  + Y-Y-~x - 10Yx~Ys~x + 19y4) 4 11 - 2 5 3 1 +  
Y Y . ~ . ? ) _ ~ 2  _ Y ) Y 

2 2 

+ 2VY~x-3V~ + 2gY-@x2x-I.tY-~ + 6fivl + 2 f i g l =  K 2 (3.8) 
Y Y Y y 

The first integral (3.8) was obtained taking into account the singular part of Eq. (1.8), which was 
initially obtained for a differential equation composed of the leading terms (the differential equation 
in this case can be obtained from Eq. (1.8) assuming 8 = B = v = 0). The first integral obtained is 
identical with Eq. (3.8) when ~ = g = v = 0. We further add to the expression obtained the additional 
polynomials of lower degree, which take into account the parameters 5, g and v. 

The first integral of (1.9), obtained using the algorithm proposed above, takes the form 

2 2 
YxYxxx lYxx YxYxx 5 2 1 5  1 3 

y 2 y y2 - r2 yyx  + 2Y - ' 3 ~ Y  + gy  = K1 (3.9) 

When finding the first integral (3.9) we also bore in mind the dimensionality of the parameters 13 
and g. One other first integral of Eq. (1.9) has the form 

2 3 2 2 2 
Yxxx _ 2YxYxxYxxx 1 Yxx YxYxx 2 11YxYxx 3 

2 3 8yxYxxx -- ~ y-"g + ~ -- Yxx + + 5y Yxx + 
Y Y Y Y 

+ lOyZy2x-l--ffy6+ 2 B ~ - 4 B y 2 - 2 ~ y y x x +  21~yx2 + 213y4 = K 2 (3.10) 
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The integrals presented above can be used to construct general solutions of Eqs (1.5)-(1.9). 

4. T H E  G E N E R A L  S O L U T I O N  OF EQ.  (1.5)  

To illustrate the algorithm we will consider the general solution of Eq. (1.5). The solution of Eq. (1.5) 
with [3 = 0 was obtained for the first time by Drach [20], and the general solution of this differential 
equation was then rediscovered by others [21, 22]. 

We will obtain the general solution of Eq. (1.5) when ~ ~e 0. We will use the variables 

2 1 1 Z 1 
H = Y x x - a Y  - z  ~ '  I = Y Y x x - ~ Y x - 3 Y  3 - x g  

Z - -  

The first integrals (3.3) and (3.4) can then be represented in the form 

( ~ ) ~ 1 
y x H x _  y2+ 6 - ~ y  H - ( ~ + 2 y ) J -  H Z + ~ S y  = K l (4.1) 

H2x + ~ H  2 - 4 H J  + ~ ) H  = K 2 (4.2) 

Suppose P(t)  is the hyperelliptic curve of the second kind 

P( t )  = t 5 + mo t4 + ml t3 + m2 t2 + m3t + m 4 

Here m0, ml, m2, m3, m4 are undetermined coefficients. Substituting the expression for J(x) from (4.2) 
into (4.1) and assuming 

with the condition that 

y = (U(X)+ v ( x ) - ~ ) ,  H(x )  = ~ u ( x ) o ( x )  

( u -  v )u  x = ~ ( u -  o ) v  x = -  P ~  (4.3) 

we obtain from the first integrals (4.1) and (4.2) 

P(t )  = t 5 - 3~t 4 + (3[~ 2 + 28)t 2 - 4~t 2 + 2(~2~ + 4K1)t + 4K 2 (4.4) 

From Eqs (4.3) we obtain the system [23, 24] 

lo (u(x) )  + Io(1)(x)) = K 3, I i ( u ( x ) )  + Ii(l~(x)) = x + K 4 
W W 

io(w ) = dt I i(w ) J P ~  

(4.5) 

which is identical with the Jacobi integrals that occur in transformation theory [23]. The solution of 
system (4.5) is similar to the solution obtained by Kovalevskaya to describe the motion of a rigid body 
about a fixed point [25, 26]. This solution is a meromorphic function, is expressed explicitly in terms 
of the Riemann theta-function and is constructed on curve (4.4). For certain relations between the 
parameters of Eq. (1.5) we can write special cases of the solution of this equation using hyperelliptic 
integrals (4.5). 

This research was supported financially by the Russian Foundation for Basic Research (01-01-00693) 
and the International Scientific-Technical Centre (1379-2). 
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